Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.

نویسندگان

  • Pawan Kumar Jha
  • Hanan Bouâouda
  • Sylviane Gourmelen
  • Stephanie Dumont
  • Fanny Fuchs
  • Yannick Goumon
  • Patrice Bourgin
  • Andries Kalsbeek
  • Etienne Challet
چکیده

Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei, were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect.SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic entrainment in nocturnal animals. How these stimuli act in diurnal species remains to be established. Our study in a diurnal rodent, the Grass rat, indicates that sleep deprivation in the early rest period induces phase delays of circadian locomotor activity rhythm. Contrary to nocturnal rodents, both sleep deprivation and caffeine-induced arousal potentiate the photic entrainment in a diurnal rodent. Such enhanced light-induced circadian responses could be relevant for developing chronotherapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeine increases light responsiveness of the mouse circadian pacemaker.

Caffeine is the most commonly used psychoactive stimulant worldwide. It reduces sleep and sleepiness by blocking access to the adenosine receptor. The level of adenosine increases during sleep deprivation, and is thought to induce sleepiness and initiate sleep. Light-induced phase shifts of the rest-activity circadian rhythms are mediated by light-responsive neurons of the suprachiasmatic nucle...

متن کامل

The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus.

Non-photic stimuli, such as diurnal wheel running in rodents, phase shift the circadian clock and suppress the expression of Per1 in the suprachiasmatic nucleus (SCN). The goal of the present study was to directly decrease Per1 expression using antisense (AS) oligodeoxynucleotides to determine if such suppression produced non-photic phase shifts. Injections of Per1-AS suppressed expression of P...

متن کامل

Chronic ethanol disrupts circadian photic entrainment and daily locomotor activity in the mouse.

BACKGROUND Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity pa...

متن کامل

Acute ethanol impairs photic and nonphotic circadian phase resetting in the Syrian hamster.

Disrupted circadian rhythmicity is associated with ethanol (EtOH) abuse, yet little is known about how EtOH affects the mammalian circadian clock of the suprachiasmatic nucleus (SCN). Clock timing is regulated by photic and nonphotic inputs to the SCN involving glutamate release from the retinohypothalamic tract and serotonin (5-HT) from the midbrain raphe, respectively. Our recent in vitro stu...

متن کامل

Cocaine Modulates Pathways for Photic and Non-photic Entrainment of the Mammalian Circadian Clock

Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine if such effects are manifest through actions on critical photic and non-photic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (i.p.) cocaine injection was evidenced by str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 37 16  شماره 

صفحات  -

تاریخ انتشار 2017